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ABSTRACT

In the light of computational outsourcing and external data storage,
data protection and trusted execution become increasingly impor-
tant. Novel hardware such as Intel’s Software Guard extensions
(SGX) attempts to provide a solution to protect data and compu-
tations from unauthorized access and manipulation, even against
attackers with physical access to a machine. However, the current
generation of SGX limits the protected memory space that can be
efficiently used to 128 MiB, which must be shared between data
and binary code. Thus, we propose to use a software product line
approach to tailor an application’s binary code in such a way that it
can be updated during runtime, with the goal to only store relevant
features in the protected memory at a given time. We provide a
prototypical implementation that enables basic support for loading
and unloading features during runtime and evaluate our prototype
in terms of execution times against non-adaptive execution.
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1 INTRODUCTION

Handling data-intensive computations can be a costly and error-
prone endeavor for many companies, as they need to acquire, run,
and maintain the necessary hard- and software, which may not
be their expertise. Thus, many companies try to reduce their cost
and risk by relying on third-party service providers to outsource
their data storage, data processing, or both [13]. The outsourcing
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process can range from simply storing data externally to using
specialized services or even running software on externally hosted
infrastructure [4]. Either way, whenever sensitive data is stored
on external machines, data owners have to trust the third-party
service provider and bear the risk of data leaks or data loss [8, 25].

A possible solution to this issue is the usage of modern hardware
for encryption and trusted execution such as Intel’s Software Guard
Extensions (SGX) [15]. Using hardware solutions can shift the trust
from service providers to hardware manufacturers, as it ensures
that sensitive data and computations cannot be read or manipulated
by unauthorized entities even with physical access to a machine. In
this paper, we focus on SGX as one particular hardware solution for
trusted execution. With SGX, Intel equips some of their CPUs with
an extended instruction set to isolate parts of the main memory [21].
However, using SGX adds new challenges to develop an application.

Currently, the most critical problem is the space limitation of
SGX-secured main memory, the enclave page cache (EPC). To ef-
ficiently process data, both the data and the application’s binary
code must reside inside the EPC. However, on current hardware,
the EPC is limited to 128 MiB. All data that does not fit inside it is
paged out to the unprotected memory and thereby causes massive
performance degradation. Thus, it is desirable to only store code
and data inside the EPC that is needed for the current task at hand.

In this paper, we propose an approach that aims to reduce the
size of an application’s binary code, to increase the amount of data
it can fit inside the EPC. Our goal is to decompose applications into
a set of features and enable loading and unloading of these features
into the EPC during runtime. Thus, we present a novel approach
for dynamically adapting SGX-enabled systems using techniques
from software product line engineering (SPLE). With this approach,
we take a step towards our vision of a secure and scalable platform
for applications inside the cloud [16].

2 BACKGROUND

In the following, we briefly explain the functionalities of Intel’s
Software Guard Extensions (SGX). We also define our notion of
features, feature models, configurations, and dynamic software
product lines. Furthermore, we provide relevant information on
the Unix Executable and Linking Format (ELF), as our variability
mechanism requires binary code in this format.

2.1 Intel SGX

The Intel Software Guard Extension (SGX) is a set of instructions
for certain Intel CPUs with the purpose of enabling trusted com-
puting in untrusted environments [2, 21]. With these instructions
developers are empowered to transparently encrypt parts of the
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main memory, in which they can store sensitive data and securely
execute their application code.

SGX was designed for an environment, in which an application
runs on an external system. Both, the hardware and higher privi-
leged software (e.g., the operating system) are controlled by a third
party, who is not trustworthy. An attacker may read and manipulate
arbitrary parts of the memory. Thus, the goal of SGX is to provide
integrity and confidentiality for sensitive data and computations
by forbidding unauthorized reads and detecting manipulations.

2.1.1  Enclaves. SGX protects data by providing secure containers
called enclaves, which are the central components of this technol-
ogy [10]. An enclave is protected from unauthorized access and
contains all code and data that is necessary for running a computa-
tional task. Whether a given application runs inside an enclave can
be verified from other machines by using remote attestation.

As an example, consider a database application on a remote
server. A typical use case is that a user wants to retrieve some
data from the database by sending a specific query. As the user
does not trust the server provider, the database application runs
inside an enclave. In this scenario, the enclave has three distinct
tasks: (1) decrypt and verify the query, (2) execute the query, and (3)
encrypt and sign the result. The remaining work (e.g., client-server
communication) can be done outside the enclave as the handled
data can neither be read nor manipulated due to the employed
cryptographic methods. In turn, the user must also encrypt and
sign the query and decrypt and verify the returned result.

Enclaves are enabled by isolating a part from the main memory
called the processor reserved memory (PRM), which contains the
enclave page cache (EPC), which, in turn, contains one or more
enclaves [10]. The PRM is protected by the CPU against access
from other processes and peripherals.

In order to securely execute some task, there are always two
contexts for an application, an untrusted and a trusted part. The
binary code of the trusted part resides inside one or more enclaves,
whereas the untrusted part’s binary code is stored in the regular
memory. At program start, the enclave is securely stored (i.e., en-
crypted and signed) in the unprotected memory. At some point
during the execution the enclave is loaded into the protected mem-
ory and initialized using the corresponding CPU instructions. This
must be done in the untrusted part of the application. The untrusted
part then may verify whether the enclave is indeed running inside
the protected memory using remote attestation. When an enclave
is initialized correctly the execution context can switch to run code
inside the enclave. As soon as the execution of the trusted part is
finished, the enclave can be destroyed from within the untrusted
part to free space in the EPC.

There are two functions for switching the memory context. These
are called ecalls and ocalls. An ecall enters an enclave by calling a
method inside of it. Parameters of that method are copied to the pro-
tected memory and the result is written back to the regular memory.
An ocall leaves the enclave and calls a method on the outside. The
execution continues within the application in the untrusted part.
Each of these transitions are relatively costly and, thus, should be
used only if necessary, to avoid performance decrease.

All code inside an enclave runs within the user space and only
has user privileges. That means that is not possible to make system
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calls inside an enclave (e.g., reading or writing to the file system),
as they require higher privileges. In order to make a system call,
the application must leave the enclave with an ocall, execute the
corresponding command, and then return the result.

2.1.2  Enclave Page Cache and Paging. Currently, one of the main
issues with SGX is the limited size of the PRM, which is 128 MiB
on the most recent hardware. In order to process data and code
inside an enclave, the enclave must be available inside the EPC.
However, some enclaves may need to store more data or code than
fits inside the EPC. This problem can be solved by using paging. An
enclave is split into single 4 KB pages and, thus, the EPC only needs
to hold pages, containing the momentarily required code and data.
If an enclave is too large to fit inside the EPC, it is paged to the
unprotected memory space. The downside of this mechanism is the
performance impact that occurs whenever a page must be written
to or read from the unprotected memory. In addition to copying
pages between both memory regions, the SGX driver must use
cryptographic functions to ensure that pages in the unprotected
memory stay confidential and loaded pages were not modified
outside the enclave.

Paging is handled by the particular SGX driver on the system.
Therefore, the application normally has no control over which
pages of an enclave are loaded and which ones are paged out. As
the SGX driver does not know an application’s context, there may
arise situations, in which an application constantly requires data
from a page that is paged out at the moment, leading to massive
performance degradation.

2.2 Variability Management

We want to address the paging problem of the SGX driver by encap-
sulating binary code within features rather than single pages. Thus,
making the memory management context-aware and ultimately
improving caching behavior. In order to enable such an adaptive
handling of binary code, we rely on the variability management
of dynamic software product lines. In our context, a product is the
trusted part of an SGX-enabled application that comprises a subset
of the functionality defined by the feature model. In the follow-
ing, we briefly describe our definition of features, feature models,
configurations, and variability mechanisms.

2.2.1 Feature Model. In the context of this paper, we define a
feature as a distinct functionality of a software product line [3].
A feature model defines the set of features of a software product
line and their interdependencies [3, 6, 11]. In Figure 1, we present a
small example of a feature model displayed as a feature diagram. In
this diagram, each feature is represented by a corresponding node
in a tree [12]. The structure, edge types, and group types of the tree
model the features’ dependencies.

2.2.2 Configuration. A configuration represents a product of a
product line by specifying the set of selected features [3]. We call a
configuration valid, iff it satisfies all dependencies defined by the
feature model. An example of a valid configuration for the feature
model given in Figure 1 is ¢; = {Calculator, Function, Add}, which
selects the respective features and deselects the remaining ones
(i.e., Verbose and Mult).
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Figure 1: Example SPL of a simple calculator.

2.2.3  Variability Mechanism. In order to generate a working prod-
uct from a software product line, a variability mechanism has to
implement the variability defined by a valid configuration. The
variability mechanism reuses the defined features to implement a
product that behaves according to the given configuration. There
exist many different variability mechanism, for instance feature-
oriented composition, preprocessors, and plug-in systems [3].

As we aim to add and remove features from an enclave, while
being executed, we are interested in a variability mechanism that
can update a configuration at runtime. Such a mechanism is nec-
essary to enable the implementation of dynamic software product
lines [14, 22]. Nevertheless, since we have to consider the restric-
tions from the SGX environment, in this paper, we present an own
variability mechanism (cf. Section 3.3), which is a dynamic approach
that works on a granularity level of methods.

2.3 Executable and Linking Format

Our variability mechanism relies on manipulating the binary data
inside an enclave. To this end, we need to extract the binary code of
amethod from compiled source files (i.e., binary files). We developed
our approach for Linux and, thus, consider the corresponding binary
format. The Executable and Linking Format (ELF) is the standard
binary format of Unix-like systems [9].

An ELF file may serve different purposes. In general, there are
three main types, of which we consider the relocatable file. A re-
locatable ELF file holds the compiled, but not yet linked source
of an application. In addition, there are two views on an ELF file,
the linking and the executable view. In this paper, we focus on the
linking view, which consists of the ELF header, a set of sections,
and the section header table.

The ELF header contains general information about file, such as
the ELF type and the offset and length of the section header table.
Each section is one continuous, non-overlapping part of the ELF
file that holds some kind of data. To locate and identify sections,
the section header table holds the relevant information about each
section in the ELF file, such as its name, type, offset, and length.

For our approach, we consider the sections . sysmtab and . text.
The . text section contains the executable binary code of the ap-
plication. The .sysmtab section represent a table containing all
symbols of an application (e.g., method names). In the case of a
method symbol, the table also contains the relative address of the
function inside the . text section.

3 DYNAMIC FEATURE MANAGEMENT

Employing Intel’s SGX, we intend to enable trusted execution for
an arbitrary application. Ideally, the entire binary code of a given
application is securely executed within an enclave, while the only

operations run from the untrusted memory are initializing and
entering the enclave. However, as the memory protected by SGX
is limited in size, we propose to modularize the application into a
dynamic software product line, in order to be able to configure the
enclave’s binary code at runtime.

With our approach, we intend to enable dynamic adaption of
code inside an enclave by allowing to load and unload features
from the product line. Ultimately, we aim to reduce the amount of
unnecessary code within the EPC to a minimum, which leaves more
space for data or other enclaves running on the same system. To this
end, we assume that often only a certain part of the application’s
entire functionality is needed at a given time.

Our approach consists of three parts, the modularization of the
application to split the source code into distinct features, the bit
extractor, which extracts the binary data for each feature from
the compiled application, and the variability manager, which is
responsible for loading and unloading the features into the enclave
during runtime. The general workflow of the development is the
following:

1. Before compile time (Modularization)
a) Add annotations
b) Model dependencies
¢) Modifying method calls
2. During compile time (Bit Extractor)
a) Compile and link static and core features
b) Compile optional features
c) Use bit extractor to create feature files
3. During runtime (Variability Manager)
a) Load enclave with static and core features
b) Load optional features

In the following, we describe all parts of our approach in more
detail.

3.1 Modularization

As a first step in our approach, we decompose an application’s
source code into features on method level. This means each method
can be assigned to a feature by adding annotations to the code. This
is a manual process, which has to be done by the developer before
compiling the source. We also need to modify certain methods calls
and specify all dependencies within the feature model.

3.1.1 Add Annotations. The mapping of a method to a feature
is done by adding an annotation above the method. An annota-
tion has the form of a line comment with the syntax //@feature
<feature_name>. A feature can be mapped to one or more methods,
but each method may only belong to one feature at maximum. We
use annotations, because they are compatible with the C standard
syntax, can be parsed relatively easily, and can be added to existing
source code without much effort or restructuring.

In Listing 1, we show an example for a small calculator appli-
cation written in C. It consist of three user-defined methods, add
(cf. Line 6), mult (cf. Line 12), and main (cf. Line 17). We used an
annotation for the feature add to the method add (cf. Line 5) and
an annotation for the feature mult to the method mult (cf. Line 11).

In the resulting variability, we differentiate between three types
of features within the source code, namely static, core, and optional
features. As static features, we consider all code that is provided
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#include <stdio.h>
#include <stdlib.h>
#include <string.h>

// @feature add
static int add(int a, int b)

{

return a + b;

O 0NN U R W N

}

11 // @feature mult
12 static int mult(int a, int b)

13 {

14 return a = b;

15 }

16

17 void main(int argc, char =argv[])

18 {

19 if (argec == 4)

20 {

21 int a = atoi(argv[2]);

22 int b = atoi(argv[3]);

23 if (stremp(argv[1], "add") == 0)

24 printf("Sum is %i", add(a, b));

25 else if (strcmp(argv[1], "mult") == 0)
26 printf ("Product is %i", mult(a, b));
27 }

28 }

Listing 1: Simple C program with two features.

by statically linked methods such as the C standard library. Core
features contain user-defined code that is always available dur-
ing runtime (i.e., it cannot not be unloaded). Both, static and core
feature are loaded immediately when initializing the enclave. The
remaining user-defined code is distributed among optional features,
which can be can be loaded and unloaded into/from the enclave dur-
ing runtime. Only optional code must by marked with annotations,
in order to map it to a certain feature.

Regarding our example in Listing 1, the method main belongs to
the core feature. In contrast, the methods add and mult are optional
and belong to the features add and mult, respectively. Additionally,
the code contains calls to some statically linked methods, such as
strcmp (cf. Line 23) and printf (cf. Line 24).

3.1.2 Model dependencies. When decomposing the application
into its single features, the developers must model their interdepen-
dencies. It is up to the developers to decide what they consider to be
meaningful features and how to structure their product line. From
a technical point of view, a meaningful feature would comprise
a single, reusable functionality. Thus, minimizing the dependen-
cies between features and, by this, maximizing the possibilities to
unload features. However, as this is hardly realizable in practice,
in this paper, we do not focus on how to achieve a reasonable de-
composed application in the context of SGX-enabled systems. We
consider this to be out of scope and a topic for future work. Rather,
we assume that an application already consists of multiple optional
features provided by the developer.

3.1.3  Modifying Method Calls. As we intend to dynamically load
features during runtime, we cannot know the memory location
of their binary code during compilation. Thus, while we can link
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Table 1: Method calls to other types of features.

From \ To Static  Core Feature Feature A Feature B
Static Direct No No No
Core Feature  Direct Direct Indirect Indirect
Feature A Indirect Indirect Direct Indirect
Feature B Indirect Indirect Indirect Direct
1 void main(int argc, char «argv[])
2 {
3 if (arge == 4)
4 {
5 int a = atoi(argv([2]);
6 int b = atoi(argv[3]);
7 if (stremp(argv[1], "add") == 0)
8 {
9 oprintf("Sum is %d", (int)
getMethod("add")(a, b));
10 }
11 else if (strcmp(argv[1], "mult") == 0)
12 {
13 oprintf("Product is %d", (int)
getMethod ("mult")(a, b));
14 }
15 }
16}

Listing 2: Main method with modified method calls.

method calls within the same feature using relative memory ad-
dresses, we are not able to statically link calls to methods from other
features. To solve this problem, we need to modify certain method
calls within the source code by replacing them with a call to the
variability manager. That is, instead of calling a method directly,
we request a function pointer from the variability manager for the
specific method using getMethod (cf. Section 3.3) and then use the
pointer to call it indirectly. This allows us to avoid static linking be-
tween different features. In turn, with this approach, we introduce
a performance overhead (cf. Section 5) and can no longer guaranty
type safety (i.e., developers must make sure that they correctly pass
parameters and cast return values).

In Table 1, we summarize, whether and how it is possible to
call a method from a different type of feature. From within static
features it is not possible to call any other feature method at all. A
core feature can directly call its own methods and all methods from
static features without the need to change the source or binary
code. It is possible within a core feature to call a method from an
optional feature (e.g., call add from within the main method (cf.
Line 24)). However, as these optional features are not present during
compile time, all method calls must be replaced in the source code
of the core feature with calls to the variability manager. Regarding
optional features, a feature can always directly call its own methods.
However, all other calls must be replaced in the source code with a
call to the variability manager.

We modify the method main from our example in Listing 1 by
replacing the calls to the feature methods add and mult as these
belong to optional features. In Listing 2, we display the result of
this transformation (cf. Line 9 and Line 13).
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In addition to replacing calls to other features, the application
itself must also be prepared for the execution within the protected
memory. As it is not possible the make system calls, some methods
must be replaced with corresponding methods from the SGX trusted
libraries or, in case they cannot be replaced, wrapped within an
ocall instead. For instance, in Listing 2, we replaced all occurrences
of the method printf with oprintf (e.g., Line 9), which wraps the
call to printf inside an ocall.

3.2 Bit Extractor

The bit extractor is our tool for retrieving the binary code for each
feature. It takes the compiled binary files and source code of the
features as input and computes a file for each feature in our feature
format, which can be parsed by the variability manager. In the
following, we describe the build process of static, core, and optional
features, the extraction process, and the resulting feature format.

3.2.1 Build Features. Both static and core features can be compiled
using the SGX tool chain for compiling sources. This results in the
signed enclave binary and the binary for the untrusted part of the
application.

Regarding optional features, their source can be compiled nor-
mally using a regular compiler such as the GNU Compiler Collection
(gcc). However, the linking to other features is skipped, because
this is done through the variability manager during runtime. The
resulting ELF files can be processed with our bit extractor tool.

3.2.2 Extracting. The input for our bit extractor tool consists of
the source of a feature and its compiled binary files. From the
annotations in the source code it infers the mapping of each method
to its feature. To extract the binary code of each feature, the bit
extractors locates the address of each method from the .symtab
section of the given ELF files and then retrieves the respective code
from the .text section. It then saves this information within a
feature file in using our feature format.

3.2.3 Feature Format. In order to prepare the loading of features
at runtime, we must store the corresponding binary code in a way
that is easily accessible for the variability manager. For each feature,
we create a file that consists of a list of exported method names for
this feature and the corresponding binary data from the ELF file.

In Table 2, we show the structure of a feature file. At the top of
the file there are two integers, representing the number of methods
within this file and the length of the binary code in bytes. The
following bytes represent the list of methods. Each entry in the list
consists of an integer that states the length of the method name
in bytes, an integer that indicates the relative position within the
binary code, and a series of bytes that represent the method name.
As the entries are of variable length, because of the method names,
a feature file must be read in a linear fashion and, thus, parsed
completely when loading a feature.

Regarding our example in Listing 1, the bit extractor creates
two files, add. f and mult.f, for each feature, respectively. In the
feature file add. f the list of methods contains only add, followed
by the corresponding binary code. We display the contents of this
file in a hexadecimal representation in Figure 2. Analogous, mult.f
contains the method mult and its corresponding binary code.

Table 2: Feature Format Structure

Content Data Type
Number of methods uint32_t
Length of binary code uint32_t
List of methods

Length of method name  uint32_t

Offset within binary code uint32_t

Method name char *
Binary code of all methods  char *
add. f

01000000 — number of methods (1)
14000000 — code length (20)
00000000 — offset (0)
03000000 — name length (3)
616464 — method name (add)
554889e5897dfc8975f8 — code
8b55fc8b45f801d05dc3

Figure 2: Hexadecimal representation of the file add. f.

3.3 Variability Manager

In order to enable loading and unloading of optional features, we
developed a component called variability manager. It is responsi-
ble for adding and removing binary code of optional features and
correctly linking the corresponding methods calls. To this end, it
provides three methods to handle features, which can load and
unload features and return a function pointer to a feature method:
void addFeature(const char+ feature_name)

void removeFeature(const char+ feature_name)

void+ getMethod (const char+ method name)

When adding a feature with addFeature, the variability manager
stores the addresses of all loaded feature methods inside a hash map.
With getMethod, the application can request a function pointer
to a feature method from the variability manager. If a requested
method is not available inside the enclave, the variability manager
automatically adapts the configuration and loads the corresponding
feature and then returns the new function pointer.

Furthermore, the variability manager holds the current config-
uration of the application and ensures that it is valid at all times.
Whenever a feature is added or removed the variability manager
updates the configuration and resolves potential conflicts by apply-
ing decision propagation. This may result in loading or unloading
of other features as well.

The variability manager belongs to the trusted part of the appli-
cation and is considered a static feature (i.e., it cannot be unloaded).
It is initialized together with the enclave and starts with a minimal
configuration that only contains the core features.

3.3.1 Loading Features. To load a feature the corresponding feature
file is read from memory and parsed to extract the list of features
and the binary code. The binary code is copied to a suitable memory
address inside the executable heap. The memory address for each
method is then stored inside a hash map using the method name as
a key. For each method, we compute its memory address by adding
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its offset value from the feature file to the memory address of the
stored binary code.

Whenever a feature method is requested, the variability manager
checks whether it is already available within the enclave or whether
the corresponding feature must be loaded first. For this purpose, the
variability manager stores a list of all features in the feature model,
their contained feature methods, and a flag indicating whether a
feature is loaded.

3.3.2  Unloading Features. To unload a feature, all its methods are
removed from the hash map by simply removing the respective
entries. Then the block of memory that were allocated for the
feature’s binary code is freed.

Unloading a feature can either be done manually by calling
removeFeature or automatically, if the variability manager re-
solves a conflict or tries to load a new feature, while there is no
memory space left. Then at least one other feature must be removed
before loading the new feature.

3.3.3 Replacement Strategies. In order to automatically remove
features from the enclave, the variability manager must use a re-
placement strategy to determine which feature can be removed.
There are many different replacement strategies that could be used
for this purpose. We require a strategy ensuring that no currently
needed feature is removed and enough memory is freed for the
feature about to be loaded.

At present, we use the simple yet effective strategy Least-Recently-
Used, which starts by removing the feature that was least recently
accessed. Features are repeatedly removed until enough space is
available to load a new feature and no conflicts remain in the current
configuration.

4 IMPLEMENTATION DETAILS

We implemented a rudimentary prototype of our approach in or-
der to evaluate the performance of loading features and executing
feature methods. In this section, we describe the implementation
details of our prototype and its software dependencies.

4.1 SGX Hardware and Software

Our evaluation system employs an Intel Xeon CPU E3-1230 v5,
which features the SGX instruction set. In order to enable SGX
on our evaluation system we use the open source Linux* Intel(R)
SGX software stack! in Version 1.9, which includes the SGX driver,
the SGX Software Development Kit (SDK), and the SGX Platform
Software (PSW).

However, theres is an issue with our hardware, that would nor-
mally prevent our approach from working. Normally, the heap
inside an enclave is not executable, as it would create a potential at-
tack surface. This means, the system prevents us from dynamically
loading a feature into the heap and then executing a feature method.
Most recent Intel CPUs with SGX support allow the software to
modify page attributes inside the enclave, which would allow us
to make the pages, storing the feature methods executable [20].
However, as we run on slightly older hardware, we need to make
a small change to the software stack instead. In particular, we use
a patch from Silva et al. [24], which adds an option to make the

https://github.com/intel/linux-sgx
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allocated memory within the heap of the enclave executable. As
explained above this increases the attack surface of our approach
and, thus, would not be a valid option for a product application.
However, in later prototypes of our approach, we can rely on the
newer hardware features, to securely acquire executable memory.

4.2 Loading and Unloading Features

To load a feature, the variability manager must first find the corre-
sponding feature file. As the name schema of the files are always
<feature_name>.f, they can easily be located within the file sys-
tem. Second, the file’s content must be read and parsed. For file
handling we use the SGX SDK versions of the standard file handling
methods of C, namely, sgx_fopen, which opens a file from memory,
sgx_fread, which reads a given number of bytes from a file, and
sgx_fclose, which closes the file. Using these methods also guaran-
tees that the feature files are securely stored as sgx_fopen already
encrypts/decrypts the specified file. Third, the feature methods
must be placed into the map. We use a hash map implementation
with linked buckets and the sha256 algorithm for computing hash
sums. For unloading a feature, we simply remove the corresponding
entries from the map and free the allocated memory block.

4.3 Current Limitations

At present, there are a number of limitations of our approach that
arise either from our utilized hardware, the rudimentary imple-
mentation of our prototype, or by our approach itself. In future
implementations, we plan to fix most of these limitations to further
support developers.

Memory Layout Restrictions. One limitation of our current ap-
proach is that methods of one feature must not be fragmented
throughout the memory, but need to stay as one coherent block to
keep their relative positions. As methods from one feature may call
each other directly, their binary code contains relative addresses
pointing the corresponding method. Therefore, altering the relative
positions can result in undefined behavior. In turn, this may lead to a
sub-optimal memory space utilization. Furthermore, our prototype
does not yet handle global variables within an application. How-
ever, this is only a limitation in our current implementation, as our
conceptual approach can easily be extended to allow annotations
for global variables as well.

Concurrent Operations. At the moment, our prototype is not
thread-safe. This means only one client may run an application at a
time. Otherwise race conditions might occur, where one client tries
to access a method that was just removed by another client leading
to an undefined behavior at runtime. However, this is not an issue
of our concept, but does only concern our current prototype.

Limitations on Variability. Our current variability mechanism
is limited to method level granularity. Though this is not a severe
complication, it may impose unnecessary restrictions to developers.
Nevertheless, an apparent finer granularity can be achieved by
explicitly including hook methods at suitable positions within a
method. Furthermore, our variability mechanism does not yet allow
refinement or overwriting of methods.
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Performance Degradation. By design, our approach introduces
an overhead to calling feature methods, which includes loading
features from the unprotected memory, computing positions in the
hash map, and indirectly calling methods. This may result in a per-
formance degradation compared to running an application outside
an enclave, but also compared to running an application inside a
static enclave. To estimated the potential performance impact of
our approach, we conduct an evaluation using our implemented
prototype.

5 EVALUATION

As our current approach introduces another layer of indirection
to many method calls inside the enclave, we are interested in the
impact to the overall execution time. To this end, we use a small
example application to measure the execution time with and with-
out applying our approach in order to determine the introduced
overhead and show the potential benefits and bottlenecks of our
approach.

5.1 Setup

We use our running example (cf. Listing 1) as a case study in the
evaluation scenario. In particular, we measure the execution time
of the method add in different settings.

Evaluation Settings. The method add takes two integers and
returns the sum of both. As this process only consists of a few CPU
instructions and is rather fast on modern systems, we run a loop that
execute this method multiple times. We start by using 1 iteration and
do further measurements with 100, 10,000, and 1,000,000 iterations.
In each iteration, we call add to add the counting variable i to a
given variable a, which we initially set to one:

i = 0; i < number_of_iterations; i++)

In total, we test five different settings:

UD  Untrusted application, Direct call

TD  Trusted application, Direct call

TI  Trusted application, Indirect call

THI Trusted application, Hashed Indirect call
TLI  Trusted application, Loaded Indirect call

N .

We start with the UD setting, in which we simply execute add
directly in a regular C application outside an enclave. Then, with
each setting, we introduce a some additional overhead that is nec-
essary for our approach. Starting with TD, we execute add inside
an enclave. However, in TD add is just a regular method inside an
enclave and not yet a dynamically loaded feature method. With TI,
we indirectly execute add by calling a function pointer that points
to its binary code. These first three settings, UD, TD, and TI act
as a baseline to differentiate the overhead introduced by different
mechanics (i.e., ecalls, function pointers, hashing). But they do not
fully meet our requirements of securely and dynamically executing
the add method. While UD is not secure at all, TD and TI lack the
flexibility to execute any method, we load inside the enclave. In the
THI setting, we read the function pointer for add from a hash map
before executing the method. The TLI setting is similar to THI, but
loads the feature add before executing add for the first time. These

Table 3: Median of measured times for each setting.

Iterations UD TD TI THI TLI
1 21 4,617 4,618 5,032 4,448,943
100 1,220 21,185 24,864 132,372 4,514,485
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2 64
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Figure 3: Median of execution times for function add in dif-
ferent settings for different number of iterations.

two setting finally behave as we desire. Using these five settings we
can compare the impact our approach has on the execution time of
a simple method.

Further Details. We run our evaluation on a system with the

following specifications:

e CPU: Intel(R) Xeon(R) CPU E3-1230 v5 @ 3.40GHz

e Memory: 32 GB

e OS: Ubuntu 16.04
For the evaluation, we disabled all compiler optimizations (i.e.,~00),
as otherwise the complier may modify the evaluation code (e.g.,
by loop unrolling), thereby biasing the results. In order to further
mitigate potential measurement biases, we execute each setting
100 times to calculate an average value. Each time we measure the
execution time for one complete ecall. Except for UD, where we
simply measure the execution of add.

5.2 Results

In Table 3, we present our measured execution times (in nano
seconds) of each setting with 1 and 100 iterations of add. Each data
point is the median of 100 measurements. Additionally, we depict
the result for more iterations of add in Figure 3. In this figure, we
also include all measured values in form of box plots, with lines
that connect the corresponding medians. Note that, both axis of
the diagram have a logarithmic scale.

From the data, we can clearly see that, indeed, the execution
time increases with each new setting due to the additional overhead
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introduced. As expected, UD has a very short execution time (21 ns),
which is two orders of magnitude faster than TD (4,617 ns). We
can explain this slowdown with the overhead of the ecall and the
general overhead of running code inside an enclave. Surprisingly,
introducing an indirect method call via a function pointer does not
add much overhead, as we can see by comparing TD (4,617 ns) and
TI (4,618 ns). The slowdown is only noticeable when executing many
iterations of add (e.g., 21,185 ns vs. 24,864 ns for 100 iterations).
Regarding THI, we can see that the lookup inside a hash map has
a higher impact on the performance (5,032 ns). That is the case,
because it takes some time to compute the hash sum and search
for the correct entry in the map. Loading a feature from memory
has by far the highest impact on performance, as we can see for
TLI (4,448,943 ns). However, in case the feature is not removed
from the enclave, this slowdown only occurs once per feature. For
subsequent calls to the feature method add the performance is the
same as for FHI. We can observe this in Figure 3, as the execution
times of THI and TLI get closer the more iterations are executed.

Overall, the evaluation results show much potential for our ap-
proach. The main bottleneck for performance is loading a feature
into the enclave. Thus, if we are able to reduce loading processes to
a minimum the benefit of having more space available in the EPC
and, thus, doing fewer paging can outweigh the loading cost during
runtime. Of course, this depends highly on the use case scenario. An
application with a relatively stable configuration should perform
much better than an application that executes many different tasks
simultaneously.

5.3 Threats to Validity

There are some issues that could threat the validity of our evaluation
results. Firstly, we used a rather small, non-real-world application.
This may lead to a result that is not generalizable to other cases.
While this is true, we did not aim for a general statement about
the performance of our approach, but mainly wanted to show its
potential benefits and possible downsides.

Secondly, our tested method has only a short execution time,
the measurement could be imprecise and depends heavily on the
resolution of the evaluation system’s internal clock. We performed
100 measurements for each setting in order to mitigate possible
measurement errors.

Finally, there is always the issue of potential programming mis-
takes within the implementation. This could lead to invalid measure-
ments and bias the overall result. Although we cannot guarantee
that our implementation is bug free, due to the simplicity of the ap-
plication, we are confident that it functioned correctly. In addition,
we examined the individual results of the add method to ensure
that it computed the correct value.

6 RELATED WORK

Silva et al. [24] implemented a similar concept for dynamically
loading a user-defined method into an enclave and executing it.
Indeed, we use a very similar mechanism to dynamically execute
a method. However, their approach is not based on the notions of
features, which can be loaded simultaneously and influence each
other and also lacks the dynamic self-adaptation that we achieve
with our approach.

Sebastian Krieter, Tobias Thiem, and Thomas Leich

There are other concepts for running entire applications inside
an enclave, such as Haven [7], SCONE [5], and Graphene [26].
These approaches focus on running unmodified applications with
SGX. This is similar to our approach, as we also aim to include a
complete application in the enclave. However they do not provide
a mechanism to update the enclave during runtime.

Another related topic is the automated partitioning of applica-
tions with Glamdring by Lind et al. [19]. Their goal is to keep the
size of the trusted code base, which runs inside an enclave as mini-
mal as possible. While we use the opposite approach (i.e., executing
the entire application in the enclave), such a partitioning algorithm
can be employed by developers to identify useful features for the
decomposition of an application into a product line.

There are several other dynamic variability mechanisms in the
context of DSPLs such as using services [1, 18], components [17],
and dynamic composition [23]. While these can be applied well for
many applications, we must take care of the restrictions imposed
by using SGX, for instance being limited to the heap memory for
loading features and the need to encrypt and verify features.

7 CONCLUSION AND FUTURE WORK

In this paper, we present an approach for the dynamic adaption
of binary code inside an Intel SGX enclave based on dynamic soft-
ware product lines. Our approach allows to freely load and remove
features into and from an enclave at runtime. This enables an ap-
plication to remove unnecessary code from the limited protected
memory and, thereby, including more data for processing, with
the ultimate goal of increasing performance. We implemented a
prototype of our approach and evaluated its performance impact on
loading features and executing feature methods inside an enclave.
Our evaluation results show that, though loading a feature is rather
costly, the execution of feature methods is almost neglectable com-
pared to executing a regular method inside an enclave. Thus, we
are looking forward to further extend our approach and prototype.

In future work, we intend to address the current limitations
of our approach. Once we overcame these limitations and built a
fully-fledged prototype, we want to evaluate it using real-world
systems. In particular, we plan to test out our approach using data-
base systems, as they required lots of data inside the EPC for data
processing and, thus, we hope to increase their performance by in-
creasing the available EPC space. Moreover, we want to increase the
performance of the resulting dynamic product line by improving
our variability mechanism. For instance, a promising approach is to
directly patch jump addresses in the binary code, instead of relying
on indirect method calls via a hash map implementation. Another
important issue that we want to investigate is assisting the user in
decomposing the application into meaningful features for usage
inside an enclave. This is especially interesting, because meaningful
decomposition might be different from a developer point of view
than from the aspect of runtime performance.
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