

STAN – Current State and Future Work

Scalable Hardware-Aided Trusted Data Management

Nico Weichbrodt, 2019-09-03/04

Moving Databases to the Cloud

- Everyone moves to the cloud
- Higher scalability and availability
- But: no trust in the cloud provider
- ightarrow Trusted Execution with Intel SGX
- \Rightarrow DBMS needs to be adapted

2019-09-03/04 | Nico Weichbrodt | STAN - Current State and Future Work | Page 2

- Enclave are isolated compartments
- Confidentiality and integrity protection
- Special memory area for enclaves: EPC
- EPC size very small: \approx 93 MiB on current hardware
 - There are plans to increase this
- Memory Layout of enclaves fixed after creation
- NEW: SGXv2
 - add/remove/change permissions of pages after enclave creation

Enclave	
Application	

Previous Research

- Efficiently handling data inside an SGX enclave
 - SGX-aware virtual memory engine
 - Prototype based on SQLite
 - \rightarrow STANlite (Sartakov et al., IC2E 2018)
- Analysing SGX performance overhead
 - Trace enclave transitions
 - Give recommendations on how to improve performance
 - \rightarrow sgx-perf (Weichbrodt et al. Middleware 2018)
- Reducing database memory footprint inside enclave
 - Decomposing of applications into features
 - Dynamically load and unload features into/out of enclaves
 - ightarrow Adaptive SGX-enabled Systems (Krieter et al. VaMoS 2019)

Work Program Status – 1.5 Years Later

- WP3: Proactive Working Set Management (TUB)
 - Prefetching experiments, $\approx_{\rm 20}$ % performance inc. in best case
 - Not evaluated further
- WP4: Extended Code Generation for Secure Interaction (TUB/HSH)
 - No automatic partitioning
 - sgx-perf code recommendations
- WP5: System Support for Integrity Preservation (TUB)
 - STANlite virtual memory engine
- WP6: Trust-aware DBMS Architecture (HSH)
 - Adaptive SGX-enabled Systems with dynamic loading
 - \Rightarrow First Half done

2019-09-03/04 | Nico Weichbrodt | STAN - Current State and Future Work | Page 5

Current Research

- Current dynamic loading has a couple issues
 - X Not thread safe, no global objects
 - X Not a real dynamic linker (no linking of jumps/calls)
 - X Function pointer ownership problems
 - ✗ Based on SGXv₁ with executable heap
- \Rightarrow New version called *sgx-dl*
 - Fix all issues above and use SGXv2
 - NEW: Hot-Patching for functions

Architecture

- sgx-dl is a simple library linked into the enclave
- SXG SDK has preliminary support for SGXv2
 - We have our own additional changes (<100 SLOC driver, <1000 SDK)
- All issues fixed: thread safe ✓, support for global object ✓, no fixed memory layout ✓, no function pointers ✓, no executable heap ✓
- New issues
 - No function pointers and unloading results in a lot of checks \rightarrow performance overhead $\pmb{\times}$
 - Optimisation: Everything is always loaded mode

2019-09-03/04 | Nico Weichbrodt | STAN - Current State and Future Work | Page 7

Language Support

- sgx-dl is language agnostic, it loads ELF files
 - In theory, everything that uses/supports C ABI should work
- Complete (tested) support for C and its features
 - Loaded functions that are dynamically called need to have signature void *fctname(void *args) like pthread threads
- Some support for C++
 - SGX C++ standard library exists, but we did not really test this
- Rudimentary support for Rust
 - No Rust standard library so only [no_std] code is supported
 - Baidu Rust SGX SDK might work here

Х

Problem:

- Enclave is potentially large (almost or even bigger than EPC size)
- Patches need to be applied \rightarrow restart needed
- Encrypt state, save to disk, restart enclave, reload state and decrypt

Solution:

- Hot-Patching of the affected functions, no restart needed
- Only possible for already dynamic functions

First Benchmarks

System:

- Intel NUC7PJYH2, Intel Pentium Silver, 4x 1.5GHz (SGXv2 capable)
 - SGXv2 only available with Gemini Lake so far
 - Skyhawk Lake: 2020
 - Cooper Lake: 2020, SGX on multi-socket servers
- 8 GiB memory, SSD

Microbenchmark:

- Tiny enclave, measure call overhead to dynamic functions
- Load three functions, call one, this one calls the other two
- Enclave restart time: 0.13 s
- These enclaves are tiny so we don't save that much time

Microbechmark Hot-Patching/Calling Overhead

Microbenchmark simple function executions enclave restart vs hot patching Threads: 1

Macrobenchmark

- Small enclave (fits EPC)
- STANlite (SQLite) with dynamic functions in SQL-VM
 - add/sub/mul/div/mod
 - No changes made to state machine except argument un-/wrapping
- State is already encrypted in untrusted memory, so no state saving needed, just additional code to set the pointers right
 - This is actually bad for us, as it reduces the benefit of hot-patching
- Enclave restart time: o.8 s

Macrobenchmark Hot-Patching/Calling Overhead

Macrobenchmark Speedtest2 (small dataset)

2019-09-03/04 Nico Weichbrodt STAN - Current State and Future Work Page 14

Next steps

- Publish sgx-dl
 - Current conference target: EuroSys 2020, deadline November
- Nicer benchmarks/more applications
 - Enclaves that don't fit EPC, make more functions of SQLite dynamic
- Integrate with a DBMS
 - e.g., MonetDB
- Next Round
 - Distributed Secure Computing
 - Intel SGX Card (3x E3-1585L v5 with PCIe interconnect)
 - SGX multi-socket servers
 - RDMA + SGX + DPDK or similar

2019-09-03/04 Nico Weichbrodt STAN - Current State and Future Work Page 15